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Review



Learning in BNs with discrete nodes

• ML estimation for complete data:

PML(Xi=x|pai=π) =
count(Xi=x,pai=π)∑
x′ count(Xi=x′,pai=π)

• For nodes with parents:

PML(Xi=x|pai=π) =
count(Xi=x,pai=π)

count(pai=π)

• For root nodes:

PML(Xi=x) =
count(Xi=x)

T
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Markov models for statistical language processing

• n-gram models of word sequences:

P(w1,w2, . . . ,wL) =
∏
`

P(w`|w`−(n−1, . . . ,w`−1)︸ ︷︷ ︸
previous words

)

• As belief networks:

n = 1
unigram

n = 2
bigram

n = 3
trigram

w1 w2 w3 wL-1
. . . wL

w1 w2 w3 wL-1
. . . wL

w1 w2 w3 wL-1
. . . wL
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Naive Bayes model for document classification

• Random variables
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dullboy..
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.

sports [0 1 1 0 0 … 0 1 0]
Y ∈ {1, 2, . . . ,m} topic of document
Xi ∈ {0, 1} ith word appears?

• Belief network

X2

Y

X1 Xn. . .

 P(Y=y)   

 P(Xi=1|Y=y)   

• Naive Bayes assumption

P(X1, . . . , Xn|Y) =
n∏
i=1

P(Xi|Y)
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Incomplete Data



Learning from incomplete data with tabular CPTs

ASSUMPTIONS

1. The DAG is fixed (and known) over a finite set of
discrete random variables {X1, X2, . . . , Xn}.

2. CPTs enumerate P(Xi=x|pa(Xi) = π) as lookup tables;
each must be estimated for all values of x and π.

3. The data is IID, but only consists of T partially complete
instantiations of the nodes in the BN.
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Toy example

• Fixed DAG over binary random variables

X3

X1

X2

X4

X1 ∈ {0, 1}
X2 ∈ {0, 1}
X3 ∈ {0, 1}
X4 ∈ {0, 1}

• Incomplete data set

example X1 X2 X3 X4
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
: : : : :
T ? 1 1 0

How to choose the
CPTs so that the BN
maximizes the probability
of this data set?
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A more interesting example ...

How to build a movie recommendation system?

• Collect a data set of movie ratings:

+ − + − ? ? +

− ? ? + + ? ?

+ + + + + + +

...
...

...
...

...
...

...
− − − − − ? −
? ? + ? ? ? −


+ liked
− disliked
? not seen

(user-item matrix)

• Build a model of user profiles and fill in the missing
ratings.
But what model to build?
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Naive Bayes model with incomplete data

Z

R1 R2 Rm-1 Rm
. . .

• Movie recommender system

Z ∈ {1, 2, . . . , k} type of movie-goer
Ri ∈ {0, 1} rating for ith movie

• Incomplete data set

student Z R1 R2 R3 R4 · · ·
1 ? 0 1 1 ? · · ·
2 ? 1 ? 0 1 · · ·
3 ? 0 0 ? 1 · · ·
: : : : : : :
T ? ? 1 0 ? · · ·

Note that the
variable Z is
never observed.
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Learning from incomplete data

• Notation

Ht = set of hidden (latent) variables for tth example
Vt = set of visible (observed) variables for tth example

• Illustration

X3

X1

X2

X4

example X1 X2 X3 X4
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
: : : : :

H1 = {X2} V1 = {X1, X3, X4}
H2 = {X3} V2 = {X1, X2, X4}
H3 = {X1, X2, X3} V3 = {X4}
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Computing the log-likelihood with incomplete data

L = log P(data)

= log
T∏
t=1

P (Vt=vt) data is IID

=
T∑
t=1

log P (Vt=vt) log ab = log a+ log b

Q. What should we do next?

A. Use product rule

B. Express P (Vt=vt) using conditional independence

C. Use marginalization

D. Use Bayes Rule

E. None of them
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Computing the log-likelihood with incomplete data

L = log P(data)

= log
T∏
t=1

P (Vt=vt) data is IID

=
T∑
t=1

log P (Vt=vt) log ab = log a+ log b

=
T∑
t=1

log
∑
h

P (Ht=h, Vt=vt) marginalization

=
T∑
t=1

log
∑
h

P(X1=x1, X2=x2, . . . , Xn=xn)
∣∣∣∣
{Ht=h,Vt=vt}

joint

=
T∑
t=1

log
∑
h

n∏
i=1

P(Xi=xi|pai=πi)

∣∣∣∣
{Ht=h,Vt=vt}

product rule
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Computing the log-likelihood with incomplete data

L = log P(data)

= log
T∏
t=1

P (Vt=vt) data is IID

=
T∑
t=1

log P (Vt=vt) log ab = log a+ log b

=
T∑
t=1

log
∑
h

P (Ht=h, Vt=vt) marginalization

=
T∑
t=1

log
∑
h

P(X1=x1, X2=x2, . . . , Xn=xn)
∣∣∣∣
{Ht=h,Vt=vt}

joint

=
T∑
t=1

log
∑
h

n∏
i=1

P(Xi=xi|pai=πi)

∣∣∣∣
{Ht=h,Vt=vt}

product rule

15 / 37



Complete versus incomplete data

• Complete data

L =
∑
i,π,x

count(Xi=x,pai=π) log P(Xi=x|pai=π)

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.

• Incomplete data

L =
T∑
t=1

log
∑
h

n∏
i=1

P(Xi=xi|pai=πi)

∣∣∣∣
{Ht=h,Vt=vt}

The CPTs are potentially all coupled.
How to proceed?
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Expectation-Maximization Algorithm



EM algorithm in a nutshell

• If only the data weren’t incomplete ...

student Z R1 R2 · · ·
1 ? 0 1 · · ·
2 ? 1 ? · · ·
3 ? 0 0 · · ·
: : : : :
T ? ? ? · · ·

If the data were complete, we
could easily estimate the CPTs.
What can we do instead?

• Here’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
Iterate the last two steps until convergence?

Amazingly, this is how EM works (more or less) ...
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EM algorithm — overview

• Initialize the CPTs

Assign random probabilities to all P(Xi=x|pai=π).

Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

• Iterate until convergence

[E-Step] Compute posterior probabilities P(Ht=h|Vt=vt).

[M-Step] Update CPTs based on these probabilities.
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vt=vt)
At other nodes: P(Xi=x,pai=π|Vt=vt)

These probabilities must be computed over a quadruple loop:

examples Vt t ∈ {1, 2, . . . , T}
nodes Xi i ∈ {1, 2, . . . ,n}

values of Xi=x e.g., x ∈ {0, 1}
values of pai=π e.g., π ∈ {0, 1}k

The # of computations grows linearly in the size of the BN,
and also in the amount of data (as expected).
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:

• At root nodes

P(Xi=x) ←− 1
T

T∑
t=1

P(Xi=x|Vt=vt)

• At nodes with parents

P(Xi=x|pai=π) ←−
∑

t=1 P(Xi=x,pai=π|Vt=vt)∑T
t=1 P(pai=π|Vt=vt)

Note that these are updates (←−), not equalities (=).
The right hand sides depend on the current CPTs.

Formulas are great, but what about intuition?
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Analogy to ML for complete data

• Indicator functions

I(x, x′) =

{
1 if x=x′

0 otherwise

• Counts

count(Xi=x) =
T∑
t=1

I(xit, x)

count(pai=π) =
T∑
t=1

I(pait, π)

count(Xi=x,pai=π) =
T∑
t=1

I(xit, x) I(pait, π)
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ML estimates for complete data

• At root nodes

PML(Xi=x) =
count(Xi=x)

T

PML(Xi=x) =
1
T

T∑
t=1

I(xit, x)

• At nodes with parents

PML(Xi=x|pai=π) =
count(Xi=x,pai=π)

count(pai=π)

PML(Xi=x|pai=π) =

∑T
t=1 I(xit, x) I(pait, π)∑T

t=1 I(pait, π)
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Intuition for EM updates — by analogy

• At root nodes

PML(Xi=x) =
1
T
∑
t

I(xit, x) ML for complete data

P(Xi=x) ← 1
T
∑
t

P(Xi=x|Vt=vt) EM update

• At nodes with parents

PML(Xi=x|pai=π) =

∑
t I(xit, x) I(pait, π)∑

t I(pait, π)
ML for complete data

P(Xi=x|pai=π) ←
∑

t P(Xi=x, pai=π|Vt=vt)∑
t P(pai=π|Vt=vt)

EM update

• Special case

Consider a CPT whose nodes are fully observed.
EM updates in this case reduce to ML estimates for complete data.
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EM updates

P(Xi=x) ←− 1
T
∑
t

P(Xi=x|Vt=vt)
root
nodes

P(Xi=x|pai=π) ←−
∑

t P(Xi=x, pai=π|Vt=vt)∑
t P(pai=π|Vt=vt)

nodes
with

parents

Intuitively:

When the data is complete, we estimate the CPTs from observed counts.

When the data is incomplete, we re-estimate the CPTs from expected counts.

These expected counts are computed from the posterior distributions
P(h|vt).
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Key properties of EM

• No learning rate

The updates do not require the tuning of a learning
rate (η > 0), as in most gradient-based methods.

• Monotonic convergence

The updated CPTs from EM always increase the
incomplete-data log-likelihood L =

∑
t log P(Vt=vt).
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Check In

Q. How much of EM did you understand?

A. (Nearly) All of it

B. Some of it, but I have some doubts

C. Maybe a little, but I’m pretty confused

D. Almost none of it; I’m totally lost
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Log-likelihood

• Incomplete data set

t A B C
1 a1 ? c1
2 a2 ? c2
...

...
...

...
T aT ? cT

BA C

How to choose the CPTs
to maximize the log-likelihood
of this (incomplete) data?

• Log-likelihood

L =
∑
t

log P(at, ct)

=
∑
t

log
∑
b
P(at, b, ct) marginalization

=
∑
t

log
∑
b
P(at) P(b|at) P(ct|at, b) product rule

=
∑
t

log
∑
b
P(at) P(b|at) P(ct|b) conditional independence
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Example

BA C Suppose that A and C are
observed and B is hidden.

Q. Which parameters of this network can you estimate directly
from the data (in one step—no iteration required)?

A. P(A)

B. P(B|A)

C. P(C|B)

D. Both A. and C.

E. None of them
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EM update for P(A)

BA C

• General form

P(Xi=x) ←−
1
T
∑
t

P(Xi=x|Vt=vt) root node

• Update for this CPT

P(A=a) ←− 1
T
∑
t

P(A=a|A=at, C=ct)

Simplify :

P(A=a) ←− 1
T
∑
t

I(a, at) =
1
T count(A=a)

The update reduces to the ML estimate for complete data—as it must,
because A is observed and has no unobserved parents.
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EM update for P(B|A)

BA C

• General form

P(Xi=x|pai=π) ←−
∑

t P(Xi=x,pai=π|Vt=vt)∑
t P(pai=π|Vt=vt)

• Update for this CPT

P(B=b|A=a) ←−
∑

t P(B=b,A=a|A=at, C=ct)∑
t P(A=a|A=at, C=ct)

Simplify :

P(B=b|A=a) ←−
∑

t I(a,at)P(B=b|A=at, C=ct)∑
t I(a,at)
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EM update for P(B|A)

BA C

• General form

P(Xi=x|pai=π) ←−
∑

t P(Xi=x,pai=π|Vt=vt)∑
t P(pai=π|Vt=vt)

• Update for this CPT

P(B=b|A=a) ←−
∑

t P(B=b,A=a|A=at, C=ct)∑
t P(A=a|A=at, C=ct)

Simplify :

P(B=b|A=a) ←−
∑

t I(a,at)
computed from Bayes rule︷ ︸︸ ︷

P(B=b|A=at, C=ct)∑
t I(a,at)
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Example

BA C Suppose that A and C are
observed and B is hidden.

• Inference

P(B=b|A=a, C=c) =
P(C=c|B=b, A=a) P(B=b|A=a)

P(C=c|A=a) BR

=
P(C=c|B=b) P(B=b|A=a)

P(C=c|A=a) CI

=
P(C=c|B=b) P(B=b|A=a)∑
b′ P(C=c|B=b′) P(B=b′|A=a)

normalized

This is the only non-trivial posterior probability that
we’ll need for the EM updates in this example.
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EM update for P(C|B)

BA C

• General form

P(Xi=x|pai=π) ←−
∑

t P(Xi=x,pai=π|Vt=vt)∑
t P(pai=π|Vt=vt)

• Update for this CPT

P(C=c|B=b) ←−
∑

t P(C=c,B=b|A=at, C=ct)∑
t P(B=b|A=at, C=ct)

Simplify :

P(C=c|B=b) ←−
∑

t I(c, ct)P(B=b|A=at, C=ct)∑
t P(B=b|A=at, C=ct)
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Summary of EM algorithm

• E-step (Inference)

P(b|at, ct) =
P(ct|b) P(b|at)∑
b′ P(ct|b′) P(b′|at)

BA C

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a) ←−
∑

t I(a, at) P(b|at, ct)∑
t I(a, at)

P(c|b) ←−
∑

t I(c, ct) P(b|at, ct)∑
t P(b|at, ct)

• Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

L =
∑
t

log
∑
b

P(at) P(b|at) P(ct|b)

35 / 37



Check In

Q. How much of EM did you understand?

A. (Nearly) All of it

B. Some of it, but I have some doubts

C. Maybe a little, but I’m pretty confused

D. Almost none of it; I’m totally lost
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That’s all folks!
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