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Review



Learning in BNs with discrete nodes

- ML estimation for complete data:

count(X;=x, pa;=m)
>, count(X;=x’, pa;=m)

PuL(Xi=xX|paj=m) =

- For nodes with parents:

count(X;=x,pa;=m
PML(X,':X‘pa,':ﬂ') = ( ’ pai )

count(pa; =)

- For root nodes:

count(X;=x)

PML(X,':X) = T
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Markov models for statistical language processing

- n-gram models of word sequences:

P(wi,wa,...,w) = H P(WelWe—y—1,. -, We—1))
]

previous words

- As belief networks:

- ) (o) ()~ () ()

unigram
- @
bigram

trigram .



Naive Bayes model for document classification

- Random variables

Ye{1,2,...,m} topicof document
X; € {0,1} ith word appears?

— [01100..010]

- Belief network

@ ®

- Naive Bayes assumption

® [Fe]

n
P(X17 s 7Xn|y) = H'D(XI|Y)
=1
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Incomplete Data



Learning from incomplete data with tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.

2. CPTs enumerate P(X;=x|pa(X;) = ) as lookup tables;
each must be estimated for all values of x and .

3. The data is IID, but only consists of T partially complete
instantiations of the nodes in the BN.
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Toy example

- Fixed DAG over binary random variables

- Incomplete data set

example | X1 | Xo | X3 | Xs
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
T ? 1 1 0

Xi e {0,1}
X, € {0,1}
X3 € {0,1}
X, € {0,1}

How to choose the
CPTs so that the BN
maximizes the probability

of this data set?
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A more interesting example ...

PARASITE

How to build a movie recommendation system?‘

- Collect a data set of movie ratings:

+ - 4+ = ? ? +
— ? ? ? ? .
L S S +  liked
+ o+ o+ o+

— disliked (user-item matrix)
7?7 notseen

- Build a model of user profiles and fill in the missing
ratings.
But what model to build?
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HE L
OO

- Movie recommender system

Z € {1,2,...,R} type of movie-goer
R ¢ {0,1} rating for i*" movie

- Incomplete data set

student V4 Ry R, R3 Ry
1 ? 111 2 [
5 7 T o T 11 No’Fe that t.he
3 ? ol 2111 - variable Z is

never observed.

/37



Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for t*h example

- Illustration
/Q(D\ example | X; | Xo | X3 | X4

1 1 ? 0 1

/® 2 ol1]z2]o

3 ? ? ? 1

&) : ———1—

Hi = {6} Vioo= {X1, X3, X}
Hy = {X} V, = {Xy, X0, X}
H3 = {X\XX} V3 = {XA}
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Computing the log-likelihood with incomplete data

L = logP(data)

T

= log [T P(ve=n)

t=1

.
= ZlogP(Vt:vt) ’Iogabzloga—i—logb
t=1

Q. What should we do next?
. Use product rule
Express P (V:=v;) using conditional independence

. Use marginalization

O N W >

. Use Bayes Rule

o

None of them
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Computing the log-likelihood with incomplete data

L = logP(data)

)
= log [T P(ve=n)

t=1

;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

;
= Zlogz P(Hi=h,Vi=v) ’marginalization‘
t=1 h

;

= Z lOgZ P(Xi=x1,Xs=X2, ..., Xn=Xn)
=1 h
T

n
= > log)  [] PXi=xipaj=m)
h =1

joint

{He=h,Vi=vt}
product rule
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Computing the log-likelihood with data

L = logP(data)

)
= log [T P(ve=n)

t=1

;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

.
= Z log > P(Hi=h,Vi=v;) ’ marginalization ‘
t=1 h

T

= Z |OgZP(X1:X1,X2:X2,...,Xn:Xn)

t=1

joint

{He=h,Vi=v¢}
product rule
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Complete versus incomplete data

- Complete data

= ) count(X;=x, pa;=m)log P(X;=x|pa; =)

I,70,X

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.

. Incomplete data
Z IogZ H P(Xj=x;|pa;=;)

The CPTs are potentially all coupled.
How to proceed?

{Ht=h,Ve=v;}
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Expectation-Maximization Algorithm




EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student

Ry

1

1

2

vl v N

3

0

T

?

- Here'’s a crazy idea ...

If the data were complete, we
could easily estimate the CPTs.
What can we do instead?

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
Iterate the last two steps until convergence?

Amazingly, this is how EM works (more or less) ...
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EM algorithm — overview

- Initialize the CPTs

Assign random probabilities to all P(X;=x|pa;=m).
Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

- Iterate until convergence

[E-Step] Compute posterior probabilities P(H;=h|V:=v;).

[M-Step] Update CPTs based on these probabilities.
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V;
nodes X;

values of X;=x
values of pa;=7

te{1,2,...,T}
ie{1,2,...,n}
eg,x € {0,1}
eg, me {0,1}F

The # of computations grows linearly in the size of the BN,
and also in the amount of data (as expected).
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
- At root nodes

.
:
Pi=X) +— 3 ; P(Xi =x|Vi=vt)

- At nodes with parents

Zt:‘\ P(X,‘:X7 pa,-:7T|Vt:Vt)
S P(pay=m|Ve=v;)

P(Xi=x|pa;j=m) +—

Note that these are updates («—), not equalities (=).
The right hand sides depend on the current CPTs.

Formulas are great, but what about intuition?
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Analogy to ML for complete data

- Indicator functions

1 v/
(X, X) = { 1 ifx=x

0 otherwise

- Counts .
count(Xj=x) = Z/(X,‘t,X)
t=1
T
count(paj=m) = Z/(pa/t,ﬁ)
t=1
T
count(Xj=x,pa;,=7m) = Z/(me)l(paitaﬁ)
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ML estimates for complete data

- At root nodes

- At nodes with parents

P (X

P (X

:x)

:X)

PML(X,' :X|pai :7T)

Pyt (X

=X|pa,;=

)

count(X;=x, pa;=m)

count(pa;=m)

Zt 11(Xit, X) I(paje, m)

Zt:1 I(paje, )
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

o) LYt

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ ML for complete data ‘

2o I(pag, )
B B > PXi=x,paj=m|Vi=w)
P(Xi=x|pa;=m) <« S Plom, = Vi=v)) EM update

- Special case

Consider a CPT whose nodes are fully observed.
EM updates in this case reduce to ML estimates for complete data.
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EM updates

1 root
P(Xi=Xx) <+— 75 P(Xi=x|Vi=V,
(=) Tt(' [Vi=v) nodes
PO =x, pa,=7|Vi=) nodes
Pi=sipn=m) o ZEURBRA )
erAPA == parents

Intuitively:
When the data is complete, we estimate the CPTs from observed counts.
When the data is incomplete, we re-estimate the CPTs from expected counts.

These expected counts are computed from the posterior distributions
P(h|vy).
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Key properties of EM

- No learning rate

The updates do not require the tuning of a learning
rate (np > 0), as in most gradient-based methods.

- Monotonic convergence

The updated CPTs from EM always increase the
incomplete-data log-likelihood £ = 3", log P(V: =Vt).
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Check In

Q. How much of EM did you understand?
A. (Nearly) All of it
B. Some of it, but | have some doubts

C. Maybe a little, but I'm pretty confused

D. Almost none of it; I'm totally lost
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- Incomplete data set .—’.

t|AalB]|cC
1|la |7 ¢ How to choose the CPTs
20 a | 7] to maximize the log-likelihood

Do : of this (incomplete) data?
T ar ? Cr
- Log-likelihood
£ = ) logP(asct)
t

b a0
3l A .

ZIOgZ ar) P(blat) P(ct|b) ’conditionalindependence‘
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‘_>. Suppose that A and C are

observed and B is hidden.

Q. Which parameters of this network can you estimate directly
from the data (in one step—no iteration required)?

A. P(A)
B. P(BJA)
C. P(C|B)
D. Both A.and C.

E. None of them
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

P(A=a) «+— !

il

> P(A=alA=a,,C=c)
t
Simplify:
PA=a) «— %Zl(a,at) _ %count(/—\:a)
t

The update reduces to the ML estimate for complete data—as it must,
because A is observed and has no unobserved parents.

30/37



EM update for P(B|A)

@—>E—06

- General form
> i P(Xi=x, paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-:7T|Vt:Vt)

- Update for this CPT

> P(B=b,A=alA=a;,C=ct)
> P(A=alA=a;, C=c)

P(B=blA=a) «—

Simplify:

Zt /(Cl7 Clt) P(B:blA:at, C:Ct)

P(B=blA=a) +— > l(a,ar)
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EM update for P(B|A)

@—>e—0

> P(Xi=x, paj=m|Ve=vt)
> i P(paj=n|Vi=v)

- General form

P(Xi=x|paj=m) +—

- Update for this CPT

> 1P(B=b,A=alA=a;,C=¢)

P(B=blA=a) <— Y P(A=alA=a;,C=ct)

Slmplify computed from Bayes rule
Zt /(CI7CIt)

P(B=blA=a) <«+—
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference

P(C=c|B=b,A=a)P(B=b|A=a
PB=bi=0,c=0) = O |P(C:C|A) Ev) -

_ P(C=c|B=b)P(B=b|A=aq)
N P(C=c|A=aq)

_ __P(C=c|B=b)P(B=blA=aq) .
= %, P(C=dB=b))PE=bA=0)

This is the only non-trivial posterior probability that
we'll need for the EM updates in this example.
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x, paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-:7T|Vt:Vt)

- Update for this CPT

> P(C=c,B=blA=a;,C=c)
Zt P(B:b|A:Gt,C:Ct)

P(C=c|B=b)

Simplify:

Zt I(C./ Ct) P(B:b|A:CIt7 C:C[)

P(C=c|B=b) +— S P(B=blA=a;,C=c;)
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Summary of EM algorithm

- E-step (Inference)
@—0>—©

P(ci|b) P(b]at)
2 P(cefb") P(b']ar)

P(blai, ct) =

- M-step (Learning)

P(a) = % count(A=aq)
P(bla) +— > l(a,a)) P(blac. i)
> l(a,ar)
P(clb) Etgﬁ)babf )
- Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

Z'ng a:) P(bla:) P(ct|b)
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Check In

Q. How much of EM did you understand?
A. (Nearly) All of it
B. Some of it, but | have some doubts

C. Maybe a little, but I'm pretty confused

D. Almost none of it; I'm totally lost
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That's all folks!
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